3.124 \(\int \frac{a+c x^4}{d+e x^2} \, dx\)

Optimal. Leaf size=55 \[ \frac{\left (a e^2+c d^2\right ) \tan ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{\sqrt{d} e^{5/2}}-\frac{c d x}{e^2}+\frac{c x^3}{3 e} \]

[Out]

-((c*d*x)/e^2) + (c*x^3)/(3*e) + ((c*d^2 + a*e^2)*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/(Sqrt[d]*e^(5/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0347125, antiderivative size = 55, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.118, Rules used = {1154, 205} \[ \frac{\left (a e^2+c d^2\right ) \tan ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{\sqrt{d} e^{5/2}}-\frac{c d x}{e^2}+\frac{c x^3}{3 e} \]

Antiderivative was successfully verified.

[In]

Int[(a + c*x^4)/(d + e*x^2),x]

[Out]

-((c*d*x)/e^2) + (c*x^3)/(3*e) + ((c*d^2 + a*e^2)*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/(Sqrt[d]*e^(5/2))

Rule 1154

Int[((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d + e*x^2)^q*(a
 + c*x^4)^p, x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && IGtQ[p, 0] && IGtQ[q, -2]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{a+c x^4}{d+e x^2} \, dx &=\int \left (-\frac{c d}{e^2}+\frac{c x^2}{e}+\frac{c d^2+a e^2}{e^2 \left (d+e x^2\right )}\right ) \, dx\\ &=-\frac{c d x}{e^2}+\frac{c x^3}{3 e}+\left (a+\frac{c d^2}{e^2}\right ) \int \frac{1}{d+e x^2} \, dx\\ &=-\frac{c d x}{e^2}+\frac{c x^3}{3 e}+\frac{\left (c d^2+a e^2\right ) \tan ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{\sqrt{d} e^{5/2}}\\ \end{align*}

Mathematica [A]  time = 0.0360523, size = 55, normalized size = 1. \[ \frac{\left (a e^2+c d^2\right ) \tan ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{\sqrt{d} e^{5/2}}-\frac{c d x}{e^2}+\frac{c x^3}{3 e} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + c*x^4)/(d + e*x^2),x]

[Out]

-((c*d*x)/e^2) + (c*x^3)/(3*e) + ((c*d^2 + a*e^2)*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/(Sqrt[d]*e^(5/2))

________________________________________________________________________________________

Maple [A]  time = 0.048, size = 57, normalized size = 1. \begin{align*}{\frac{c{x}^{3}}{3\,e}}-{\frac{cdx}{{e}^{2}}}+{a\arctan \left ({ex{\frac{1}{\sqrt{de}}}} \right ){\frac{1}{\sqrt{de}}}}+{\frac{c{d}^{2}}{{e}^{2}}\arctan \left ({ex{\frac{1}{\sqrt{de}}}} \right ){\frac{1}{\sqrt{de}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^4+a)/(e*x^2+d),x)

[Out]

1/3*c*x^3/e-c*d*x/e^2+1/(d*e)^(1/2)*arctan(e*x/(d*e)^(1/2))*a+1/e^2/(d*e)^(1/2)*arctan(e*x/(d*e)^(1/2))*c*d^2

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+a)/(e*x^2+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.93919, size = 293, normalized size = 5.33 \begin{align*} \left [\frac{2 \, c d e^{2} x^{3} - 6 \, c d^{2} e x - 3 \,{\left (c d^{2} + a e^{2}\right )} \sqrt{-d e} \log \left (\frac{e x^{2} - 2 \, \sqrt{-d e} x - d}{e x^{2} + d}\right )}{6 \, d e^{3}}, \frac{c d e^{2} x^{3} - 3 \, c d^{2} e x + 3 \,{\left (c d^{2} + a e^{2}\right )} \sqrt{d e} \arctan \left (\frac{\sqrt{d e} x}{d}\right )}{3 \, d e^{3}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+a)/(e*x^2+d),x, algorithm="fricas")

[Out]

[1/6*(2*c*d*e^2*x^3 - 6*c*d^2*e*x - 3*(c*d^2 + a*e^2)*sqrt(-d*e)*log((e*x^2 - 2*sqrt(-d*e)*x - d)/(e*x^2 + d))
)/(d*e^3), 1/3*(c*d*e^2*x^3 - 3*c*d^2*e*x + 3*(c*d^2 + a*e^2)*sqrt(d*e)*arctan(sqrt(d*e)*x/d))/(d*e^3)]

________________________________________________________________________________________

Sympy [B]  time = 0.427377, size = 104, normalized size = 1.89 \begin{align*} - \frac{c d x}{e^{2}} + \frac{c x^{3}}{3 e} - \frac{\sqrt{- \frac{1}{d e^{5}}} \left (a e^{2} + c d^{2}\right ) \log{\left (- d e^{2} \sqrt{- \frac{1}{d e^{5}}} + x \right )}}{2} + \frac{\sqrt{- \frac{1}{d e^{5}}} \left (a e^{2} + c d^{2}\right ) \log{\left (d e^{2} \sqrt{- \frac{1}{d e^{5}}} + x \right )}}{2} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**4+a)/(e*x**2+d),x)

[Out]

-c*d*x/e**2 + c*x**3/(3*e) - sqrt(-1/(d*e**5))*(a*e**2 + c*d**2)*log(-d*e**2*sqrt(-1/(d*e**5)) + x)/2 + sqrt(-
1/(d*e**5))*(a*e**2 + c*d**2)*log(d*e**2*sqrt(-1/(d*e**5)) + x)/2

________________________________________________________________________________________

Giac [A]  time = 1.12393, size = 59, normalized size = 1.07 \begin{align*} \frac{{\left (c d^{2} + a e^{2}\right )} \arctan \left (\frac{x e^{\frac{1}{2}}}{\sqrt{d}}\right ) e^{\left (-\frac{5}{2}\right )}}{\sqrt{d}} + \frac{1}{3} \,{\left (c x^{3} e^{2} - 3 \, c d x e\right )} e^{\left (-3\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+a)/(e*x^2+d),x, algorithm="giac")

[Out]

(c*d^2 + a*e^2)*arctan(x*e^(1/2)/sqrt(d))*e^(-5/2)/sqrt(d) + 1/3*(c*x^3*e^2 - 3*c*d*x*e)*e^(-3)